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Abstract—We study channel-aware decision fusion over a
multiple-input multiple-output (MIMO) channel in the large-
array regime at the decision-fusion center (DFC). Inhomogeneous
large-scale fading between the sensors and the DFC is consider
in addition to the small-scale fading, and pilot-based channel
estimation is performed at the DFC. Linear processing techniques
are analyzed in order to design low-complexity alternatives
to the optimum log-likelihood ratio test (LLRT). Performance
evaluation based on Monte Carlo simulations are presented.

I. INTRODUCTION

Distributed detection through wireless sensor networks
(WSNs) has been largely studied with reference to the parallel
access channel (PAC) [1], [2], i.e. sensors exploit (dedi-
cated) orthogonal channels to inform the decision-fusion cen-
ter (DFC). Near-optimal fusion rules with full channel state
information (CSI) at the receiver have been proposed in [3].

Recent works [4]–[7] extended the analysis to the mul-
tiple access channel (MAC) by exploiting appropriately the
interfering nature of the wireless medium. Looking at the
system as a “virtual” multi-input multi-output (MIMO), array
processing techniques at the DFC have been investigated and
compared in terms of performance, complexity, and knowledge
requirements [8]–[10].

Massive MIMO is an emerging technology for communica-
tions where receive arrays with a few hundred elements serve
many tens of terminals simultaneously [11]. The potential
benefits are capacity increase, deep-fading mitigation, MAC-
layer simplification, increased interference rejection. From a
mathematical point of view, large-size arrays lead to averaging
small-scale fading out, orthogonality of random channel vec-
tors between the users and the base station, reduction of the
transmitted energy. Focusing on the tradeoff between energy
and spectral efficiency, performance of linear detectors for
uplink communications in presence of imperfect CSI have been
analyzed in [12].

The advantages offered by massive MIMO may be bene-
ficial for DF in WSNs over MAC. In this paper we propose
an architecture which, in addition to be spectral efficient, will
mitigate severe energy constraints given by inexpensive sensor
nodes (i.e. extended battery life) and allow low-complexity
(but near-optimal) fusion rules at the DFC. Pilot-based channel
estimation is performed in order to employ channel-aware
decision fusion at the DFC.

0This work has been partially funded by ERCIM and by CAMOS.

The outline of the paper is the following: Sec. II presents
the system model; Secs. III and IV describe the channel
estimation and the decision fusion steps, respectively; Sec. V
compares the performance of simulated systems; some final
remarks are given in Sec. VI.

II. SYSTEM MODEL

We consider K sensors sensing a binary source, each
taking autonomously a local decision. The two hypotheses are
denoted H0 and H1 and may represent the absence and the
presence of a specific target of interest, respectively.

We assume that the local sensing and decision process is
fully described by the local probability of false alarm (pf )
and the local probability of detection (pd), both assumed to
be stationary, identical, and conditionally independent given
the specific hypothesis. The K sensors, each with one single
transmit antenna, communicate simultaneously their decision
to a DFC equipped with N receive antennas (N � K, i.e.
large-size array configuration is assumed) whose aim is to
provide a robust decision on the basis of the multiple received
information. All the sensors employ binary phase shift keying
(BPSK) modulation with identical parameters (transmission
pulse, carrier frequency, etc.). Also, we assume that the system
is fully synchronized.

We denote xk ∈ X = {−1,+1} the symbol transmitted
by the kth sensor encoding its local decision (we assume −1
for H0 and +1 for H1); Gn,k the fading channel coefficient
on the link between the kth sensor and nth receive antenna
of the DFC; yn the signal received by the nth antenna of the
DFC; and wn ∼ NC(0, σ2

w) the additive white Gaussian noise
at the nth receive antenna of the DFC. Channel coefficients
are expressed as

Gn,k =
√
dkHn,k , (1)

0Notation – Lower-case bold letters denote vectors, with an being the nth
element of a; upper-case bold letters denote matrices, with An,m denoting
the (n,m)th element of A; <(a) denotes the real part of a; IN denotes
the N ×N identity matrix; 0N denotes the N -length vector whose elements
are 0; diag(a) denotes a diagonal matrix with a on the main diagonal; (·)∗,
(·)t, (·)†, and ‖ · ‖ denote conjugate, transpose, conjugate transpose, and
Frobenius norm operators; Pr(A) denotes the probability of the event A;
p(a) denotes the probability density function (pdf) of the random variable
a; <(a), =(a), and |a| denote the real part, the imaginary part, and the
modulus of a, respectively; An denotes the nth Cartesian power of the set
A; N (µ, σ2) denotes a (real scalar) normal distribution with mean µ and
variance σ2; NC(µ,Σ) denotes a circular proper normal distribution with
mean vector µ and covariance matrix Σ; Q(·) denotes the tail distribution of
a standard normal random variable; ∼ means “distributed as”.
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where
√
dk models known geometric attenuation and shad-

owing, while Hn,k ∼ NC(0, 1) is the unknown independent
fast fading. Denoting D = diag (d1, . . . , dK), then G =
HD1/2 and the discrete-time model for the received signal
y = (y1, . . . , yN )

t is

y =
√
ρGx+w . (2)

where x = (x1, . . . , xK)
t denotes the transmitted vector (of

local decisions), w = (w1, . . . , wN )
t is the noise vector, and

ρ controls the energy spent during the detection phase.

III. CHANNEL ESTIMATION

We assume that τ̃ ≥ K symbols are used as pilots for
channel estimation at the DFC, and τc − τ̃ symbols are used
for target detection, where τc is the number of symbols within
the channel coherence interval. During the training phase,
all sensors simultaneously transmit mutually orthogonal pilot
sequences of length τ̃ . Pilot sequences are collected in a matrix√
τ̃ ρ̃Φ, where ρ̃ controls pilot energy, such that Φ†Φ = IK .

The received signal model for the training phase is:

Ỹ =
√
τ̃ ρ̃GΦt + W̃ , (3)

where W̃n,k ∼ NC(0, σ2
w). The corresponding minimum

mean-square error (MMSE) estimator of G given Ỹ is [13]

Ĝ =
1√
τ̃ ρ̃
Ỹ Φ∗

(
σ2
w√
τ̃ ρ̃
D−1 + IK

)−1
︸ ︷︷ ︸

D̃

(4)

=

(
G+

1√
τ̃ ρ̃
W̃Φ∗

)
D̃ . (5)

Defining the error matrix Ξ = Ĝ − G, it can be shown
that Ξ and Ĝ are statistically independent and have mu-
tually statistically independent columns, denote ξk and ĝk,
respectively. More specifically, ξk ∼ NC

(
0N , ε

2
kIN

)
and

ĝk ∼ NC
(
0N , δ

2
kIN

)
, where

ε2k =
σ2
wdk

τ̃ ρ̃dk + σ2
w

, δ2k =
τ̃ ρ̃d2k

τ̃ ρ̃dk + σ2
w

. (6)

It is worth noticing that perfect channel estimation is ap-
proached for large τ̃ .

In the following, we will make use of the following
approximation, namely favorable propagation condition, due
to the mutual statistical independence of ĝk and due to N � K

1

N
Ĝ†Ĝ ≈∆ . (7)

where ∆ = diag
(
δ21 , . . . , δ

2
K

)
.

Finally, the energy spent by the generic sensor is

Es = τ̃ ρ̃+ (τc − τ̃)ρ , (8)

while the total energy spent by the WSN is E = KEs.

IV. DECISION FUSION

The decision is usually performed as a test comparing a
signal-dependent statistic (λ(y)) and a fixed threshold (γ)

λ(y)
Ĥ=H1

≷
Ĥ=H0

γ , (9)

where Ĥ denotes the estimated hypothesis. Performance are
evaluated in terms of global probability of false alarm (qf )
and global probability of detection (qd), defined as follows

qf = Pr (λ(y) > γ|H0) , qd = Pr (λ(y) > γ|H1) . (10)

It is worth noticing that Pr(λ > γ|Hi) describes both qf and
qd (with i = 0 and i = 1, respectively). The threshold in
Eq. (9) is usually selected according to Bayes or Neyman-
Pearson criteria [13]. For system performance evaluation, we
consider the behavior of the global probability of detection (qd)
versus the global probability of false alarm (qf ), commonly
denoted receiver operating characteristic (ROC).

A. Optimal Test

The log-likelihood ratio (LLR) of the received signal under
the two hypotheses provides the optimal test1

λ(y) = log

(
p(y|Ĝ,H1)

p(y|Ĝ,H0)

)

= log

(∑
x∈XK p(y|x, Ĝ)

∏K
k=1 Pr(xk|H1)∑

x∈XK p(y|x, Ĝ)
∏K
k=1 Pr(xk|H0)

)

= log

∑x∈XK exp
(
−‖y−

√
ρĜx‖2
σ2
e

)∏K
k=1 Pr(xk|H1)∑

x∈XK exp
(
−‖y−

√
ρĜx‖2
σ2
e

)∏K
k=1 Pr(xk|H0)

 ,

(11)

where we replaced G = Ĝ − Ξ in Eq. (2) and denoted
σ2
e = ρ

∑K
k=1 ε

2
k+σ2

w. Also, it is worth noticing that Pr(xk =
+1|H0) = pf and Pr(xk = +1|H1) = pd.

Unfortunately, Eq. (11) is not attractive because: (i) re-
quires availability of the CSI, of the local sensor performance,
and of the signal-to-noise ratio (SNR); (ii) is numerically
unstable because of exponential functions; (iii) exhibits expo-
nential complexity with the number of sensors K. Design of
sub-optimal DF rules with simpler implementation and reduced
system knowledge is then extremely desirable.

B. Linear-Processing-Based Test

The optimal test can be replaced with a two-step archi-
tecture undergoing almost the same performance but much
lower complexity. Starting from Eq. (2), we consider the linear
processing z = A†y which denotes matched filter (MF), zero
forcing (ZF) and MMSE processing, i.e.

A =


Ĝ MF

Ĝ
(
Ĝ†Ĝ

)−1
ZF

Ĝ
(
Ĝ†Ĝ+

σ2
e

ρ IK

)−1
MMSE

. (12)

1We consider the optimal test conditioned on the estimated matrix Ĝ. The
optimal statistic in absolute sense would be one jointly processing {y; Ỹ }
(as in [14]) whose computational complexity is however unpractical.
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It can be proven that z represents a sufficient statistic for
the three cases (the proof is omitted due to space limitations).
Additionally, it is easily shown to be Gaussian distributed,
namely z|Ĝ,x ∼ NC (µz,Σz). In the specific case of fa-
vorable propagation conditions

µz ≈
{
N
√
ρ∆x MF

√
ρx ZF, MMSE

, (13)

Σz ≈

{
Nσ2

e∆ MF
σ2
e

N ∆−1 ZF, MMSE
, (14)

which reveals an appealing asymptotic (in the case of large-size
array) behavior, i.e. independence among sensor contributions

p(z|Ĝ,x) ≈
K∏
k=1

p(zk|xk) , (15)

where

zk|xk ∼
{
NC
(
N
√
ρδ2kxk, Nσ

2
eδ

2
k

)
MF

NC
(√
ρxk, σ

2
e/(Nδ

2
k)
)

ZF, MMSE
. (16)

1) Decode-and-Fuse (DaF) Approach: Replacing Eq. (15)
into (11) leads to a DFC operating over a PAC, whose
properties have been studied in details in [1], [3]. Additionally,
using the well-known Max-Log approximation [15], we finally
get the test λ(z) =

∑K
k=1 λk(zk), where λk(zk) is obtained

through the following saturated linear sructure

λk(zk) =


c1 fk(zk) < a1
2fk(zk) + c2 a1 ≤ fk(zk) < a2
c3 fk(zk) ≥ a2

, (17)

with c1 = log
(

1−pd
1−pf

)
, c2 = log

(
pd

1−pf

)
, c3 = log

(
pd
pf

)
,

a1 = 1
2 log

(
pd

1−pd

)
, a2 = 1

2 log
(

pf
1−pf

)
, and

fk(zk) =

{ 2
√
ρ

σ2
e
<{zk} MF

2N
√
ρδ2k

σ2
e
<{zk} ZF, MMSE

. (18)

2) Decode-then-Fuse (DtF) Approach: Alternatively, we
consider the quantized (one-bit per component) version of z,
namely ž = sign (<{z}), in which case Eq. (16) is replaced
with

Pr(žk = xk|xk) =1−Q

(√
2Nρδ2k
σe

)
, (19)

and, exploiting the Chair-Varshney rule [1], the test is λ(ž) =∑K
k=1 λk(žk), where λk(žk) is obtained through

λk(žk) = uk log

(
αk(pd)

αk(pf )

)
+ (1− uk) log

(
1− αk(pd)

1− αk(pf )

)
,

(20)

with αk(p) = p

(
1−Q

(√
2Nρδ2k
σe

))
+ (1−p)Q

(√
2Nρδ2k
σe

)
and uk = (1 + žk)/2.

3) Computational Complexity: It is worth noticing that the
computational complexity of the linear-processing-based test is
mainly due to the computation of the sufficient statistic z or
ž, then being O(KN). This is the computation complexity for
the detection phase, when CSI is assumed to be known. The
complexity for CSI acquisition, in the case of ZF and MMSE,
is mainly due to the matrix inversion in Eq. (12), while in the
case of MF the dominant term is due to Eq. (5).

V. SIMULATION RESULTS

We assume that D is generated analogously as in [12],
where sensors are deployed within a 2D ring with outer (resp.
inner) radius rmax = 1 km (resp. rmin = 0.1 km and the
DFC is located in the center. The large-scale fading is modeled
as dk = νk (rmin/rk)

2 where νk is a log-normal random
variable, i.e. 10 log10(νk) ∼ N (µν , σ

2
ν) and rk denotes the

distance between the kth sensor and the DFC. CSI is obtained
selecting τ̃ = K (corresponding to the minimum length for
the training sequences, i.e. the minimum the energy spent for
channel training).

A WSN with K = 10 sensors with local performance pf =
0.05 and pd = 0.5 is considered. For sake of simplicity we
assume ρ = ρ̃ = 1 and σ2

w = 1. Performance with moderate-
size array (N = 20) and large-size array (N = 100) at the
DFC are compared.

The benchmark for performance evaluation is the observa-
tion bound [8], i.e. the performance achieved in the ideal case
that the reporting channel is perfect

qf =

K∑
`=c

(
K

`

)
p`f (1− pf )K−` , (21)

qd =

K∑
`=c

(
K

`

)
p`d(1− pd)K−` , (22)

where c ∈ {0, . . . ,K} is a discrete threshold.

Fig. 1 shows the the global probability of detection (qd)
vs. the mean parameter of the log-normal fading (µν , which
can be thought as a sort of SNR), while fixing σν = 2 dB and
qf = 0.01. Both DaF (solid lines) and DtF (dashed lines)
approaches are considered. The loss in performance of the
latter with respect to the former is apparent in some cases
(MF in moderate- and large-size arrays, ZF in large-size array,
MMSE in moderate-size array), while in other cases both
approaches perform quite similar for a large SNR range.

Fig. 2 compares the ROC curves only for the DaF approach.
It is apparent how the gap from the optimal performance
reduces dramatically when large-size arrays are considered,
confirming the asymptotic optimality. This is more visible in
Fig. 3 where the ZF linear processing seems to guarantee
the fastest convergence with respect to the number of receive
antennas (N ).

VI. CONCLUSION

Channel-aware (through pilot-based channel estimation)
decision fusion over massive MIMO has been analyzed. Lin-
ear processing techniques (MF, ZF, and MMSE) have been
considered in order to design low-complexity fusion rules
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Fig. 1. qd vs µν at qf = 0.01 with for DaF (solid lines) and DtF (dashed
lines) approaches with K = 10 sensors. Log-normal fading with σν = 2 dB
is assumed.
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Fig. 2. qd vs qf at qf = 0.01 for DaF approache with K = 10 sensors.
Log-normal fading parameters are µν = 4 dB and σν = 2 dB.

which asymptotically (for extremely large number of receive
antennas) approach the optimum performance. DaF and DtF
approaches have been compared with DaF-ZF being the most
interesting in terms of complexity and performance.
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